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1. Introduction

Integrability is one of the most important guiding principles to find correspondences beyond

the BMN limit [1] of AdS/CFT correspondence. After generalizations of BMN’s work [2, 3]

the Bethe ansatz was brought to use in this problem [4], and integrable spin chain models

have been shown to describe semiclassical spinning strings [5] as well as superconformal

Yang-Mills theories [6]. Those techniques are used to examine the correspondence between

the string energy spectrum and the dilatation operator [7, 8] (see [9] for review). For an

integrable system conserved quantities are not only the above energy operator but also an

infinite set of conserved nonlocal charges [10]. The existence of an infinite set of conserved

nonlocal charges implies the absence of particle production and the factorization of the

S-matrix [10, 11].

Brezin, Itzykson, Zinn-Justin and Zuber (BIZZ) gave a simple derivation of these

nonlocal charges [12]: Assume that one has a set of conserved and “flat” currents Jα,

∂αJα = 0 and εαβ(∂αJβ − JαJβ) = 0. Then an infinite set of nonlocal currents J[N ]α

are constructed inductively. The zero-th order current is set to be the Noether current

J[0]α = Jα. The first order current, J[1]α, is determined by the “flatness” condition as

εαβ(∂αJβ − JαJβ) = ∂αJ α
[1] = 0 where the nonabelian structure of Jα gives rise to the

nonlocality of J[1]α. The “flatness” condition is a “dual” equation of the two-dimensional
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worldsheet which is closely related to the Buscher T-duality [13]. In this paper we examine

whether the two-dimensional dual formulation required in the nonlocal charges shares any

concept with the two-dimensional transformation of T-duality.

Bena, Roiban and Polchinski showed the existence of an infinite set of conserved nonlo-

cal charges of a superstring in the AdS5×S5 background [14], while the one for the bosonic

part was shown in [15] and the one in manifestly κ-invariant way was shown in [16]. Ad-

ditional discussion of nonlocal charges of strings in the AdS background can be found

in refs. [17 – 24]. For an integrable model there exist a spectral parameter which relates

an infinite set of “local” charges and an infinite set of nonlocal charges. Recently it has

been shown that an infinite number of conserved “local” charges for a superstring in the

AdS5×S5 background are combinations of the Virasoro constraint and the κ symmetry con-

straints [25] which govern the target space field equations. So it is natural to expect that the

nonlocal charges reflect the spacetime isometry and stringy symmetry of the target space.

In order to figure out physical meanings of nonlocal charges we compute nonlocal charges

explicitly. In this paper a flat space background and the IIB and IIA pp-wave backgrounds

are examined so the nonlocal integration can be performed in terms of oscillators.

The existence of an infinite set of nonlocal charges in the pp-wave background was

shown by Alday [26]. We will further develop the work by (1) computing higher order

nonlocal charges with respect to complete set of isometry generators, and (2) computing

nonlocal charges of a string in the pp-wave background before and after T-dual trans-

formation. The IIB pp-wave background is compactified and T-duality transformation is

performed as [27], then the string in the IIA pp-wave background is quantized [28, 29].

For the IIA background we will focus on the Noether charges which are the zero-th order

charges, and we will examine whether they are related to the nonlocal charges of the IIB

background.

We also clarify the procedure of constructing nonlocal charges of strings in a flat and

the pp-wave background which are described by the inhomogeneous O(n) nonlinear sigma

model. The BIZZ procedure [12] was originally applied to a homogeneous O(n) non-linear

sigma model; the nonlocal charges are systematically constructed from a conserved and

“flat” current. This current is a O(n) left-invariant current and satisfies the Maurer-Cartan

(M.C.) equation for the o(n) algebra which is the “flatness” condition. For a string in a

flat background the geometry may be regarded as a coset sigma model of the Poincaré

group over the Lorentz group and the string coordinate is the coset parameter. But the

left-invariant current Jα = g−1∂αg of a coset element g(Xµ) = exp(iXµPµ) neither has

a Lorentz generator component nor satisfies the M.C. equation for the Poincaré algebra,

because the coset algebra is abelian, [Pµ, Pν ] = 0. So the BIZZ procedure is not applicable

naively to a string in a flat space. On the other hand the flat background is obtained

by the Inönü-Wigner (IW) contraction of an AdS space represented by the coset of the

homogeneous SO(n, 2) group over the SO(n, 1), then one-form currents obtained by the

IW contraction satisfy the Poincaré M.C. equation. For the AdS space before the IW

contraction the conserved and “flat” current is nothing but the Noether current of the

action. From above two facts we begin with Noether currents as the conserved currents

for a flat and pp-wave spaces, and we will examine whether they satisfy the “flatness”

– 2 –
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condition corresponding to the background isometries. Using these conserved and “flat”

currents we will construct an infinite set of conserved nonlocal currents and charges in a

flat and pp-wave backgrounds.

We also point out how to define the integration path for conserved charges of a closed

string with winding modes. For a conserved current ∂αJα = 0 one utilizes a dual potential

χ such that Jα = εαβ∂βχ, but this χ is a single-valued function only on a simply connected

region. Therefore we define the potential χ, and hence the nonlocal current, on a semi-

infinite strip cut open the cylinderical worldsheet. The conserved charges are given by

integration along the boundary path of the semi-infinite strip.

The organization of the paper is as follows. In section 2 the current conservation

and the “flatness” condition for a string in a flat background are examined and a general

argument of the Noether current for inhomogeneous backgrounds is presented. By the

BIZZ procedure we construct nonlocal charges and compare them before and after the

T-duality transformation. In section 3 we compute nonlocal charges of a string in the

type IIB pp-wave background and write down concrete expressions for zero-th, first and

second order. In section 4 T-duality transformation on the Michelson’s cycle is performed

to obtain the type IIA pp-wave background, and nonlocal charges before and after the

T-duality transformation are computed. From the completeness of this correspondence, a

conjugate coordinate to the winding mode is introduced by adding the Wess-Zumino term

in the type IIB action which corresponds to the Buscher T-duality transformation.

2. Flat background

The action of a string in a flat background has not only the translational symmetry but

also the Lorentz symmetry. Although the translational group is abelian, considering the

whole Poincaré group gives nontrivial structure of the nonlocal charges especially under

T-duality. At first we will clarify the Noether current for inhomogeneous SO(n) cosets and

examine the procedure of constructing nonlocal charges. Then we will compute nonlocal

charges and compare them under T-duality.

2.1 Noether charges

The action for a string in a flat space is given by

S = − 1

4πα′

∫

d2σ
√
−hhαβ∂αXµ∂βXνηµν (2.1)

where hαβ is the worldsheet metric and the conformal gauge
√
−hhαβ = ηαβ is chosen from

now on. A closed string is quantized as

Xµ = xµ + α′pµτ +
√

α′

2

∑

n 6=0

i

n

(

αµ
ne−in(τ+σ) + α̃µ

ne−in(τ−σ)
)

[xµ, pν ] = iηµν , [αµ
m, αν

n] = mδm,−nηµν = [α̃µ
m, α̃ν

n] . (2.2)

Noether currents under the translation and the Lorentz rotation are

Pµ
α = 1

2πα′ ∂αXµ , Mµν
α = 1

2πα′ X
[µ∂αXν] (2.3)

– 3 –
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satisfying the conservation law

∂αPµ
α = 0 = ∂αMµν

α . (2.4)

Noether charges are given by

P̂µ =

∫ 2π

0
dσ Pµ

τ = pµ

M̂µν =

∫ 2π

0
dσ Mµν

τ = x[µpν] +
i

2

∑

n 6=0

1

n

(

α[µ
n α

ν]
−n + α̃[µ

n α̃
ν]
−n

)

(2.5)

satisfying the Poincaré algebra

[

M̂µν , M̂ρλ
]

= iη[µ|[λM̂ρ]|ν] ,
[

M̂µν , P̂ ρ
]

= iηρ[µP̂ ν] . (2.6)

The structure constant of the Poincaré algebra in (2.6) is denoted by f c
ab in [Ta, Tb] = f c

abTc

with Ta = (P̂µ, M̂µν).

Next let us introduce the one forms by multiplying the one form basis as

Jµ = dσαPµ
α , Jµν = dσαMµν

α , (2.7)

then we act the exterior derivative on them

dJµ = 0 , dJµν = 4πα′Jµ ∧ Jν . (2.8)

In addition to the equations (2.8) the consistency ddJA = 0 allows to regard the Noether

currents (2.3) or (2.7) as currents on a group manifold. If we read off the “structure

constant” from (2.8) as

dJC =
1

2
FC

ABJA ∧ JB , JA = (Jµ, Jµν) , (2.9)

then this structure constant FC
AB is different from the one of the Poincaré algebra f c

ab. This

is common for the inhomogeneous spaces such as a flat space and pp-wave spaces, unlike

AdS spaces. At first we explain this feature and then we will use this structure constant

FC
AB to obtain the nonlocal charges.

2.2 Noether currents for inhomogeneous SO(n) cosets

Consider a G/H coset sigma model with identification g(x) ∼ g(x)h(x), g(x) ∈ G, h(x) ∈
H. Let G and H be the Lie algebra of G and H, and let G = H⊕K. We assume that the

coset is a symmetric space, that is, there exist a ‘parity’ transformation θ such that

θ(H) = +H , θ(K) = −K . (2.10)

As in [14], define

Jα = g−1∂αg , Jα = Hα + Kα (2.11)
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with Hα ∈ H, Kα ∈ K. The Lagrangian is given by

L = −1

4
Tr∂αM∂αM−1, M = g · θ(g−1)

= TrKαKα. (2.12)

If the trace is non-degenerate on K, one can derive the equation of motion

∂αKα + [Hα,Kα] = 0 . (2.13)

Then it follows that kα ≡ gKαg−1 is a conserved current:

∂αkα = 0 . (2.14)

In general kα is invariant under the local gauge transformation, g(x) → g(x)h(x), and is

identified as the Noether current of the coset model. The Noether current kα has both H
and K components unlike Kα which has only K components. However, if K is abelian, kα

belongs to K and has no H components. Therefore, in this case kα constructed above does

not exhaust all the Noether currents of the model. In our case the bosonic string action in

the flat space is regarded as the coset sigma model of the Poincaré group over the Lorentz

group. Since the translation group is abelian, the conserved currents constructed as kα

only contain ∂αXµ, the Noether currents for the translation, but not those for the Lorentz

rotations.

For a supersymmetric system the coset is not a symmetric space anymore because of

the superalgebra {Q,Q} = P . The ‘parity’ is modified to four-fold grading [30, 31], and

the conserved current is not simply gKαg−1 but with the κ-symmetric modification [16].

Let us consider a flat space as a coset ISO(D, 1)/SO(D − 1, 1) obtained by the IW

contraction of a coset SO(D, 1)/SO(D−1, 1). We begin with a coset element g ∈ G/H with

G = SO(D, 1) and H = SO(D−1, 1). The Noether current has both H and K components

as k = kH + kK with kH ∈ H and kK ∈ K. They satisfy the following M.C. equation

dkK = kH ∧ kK , dkH = kH ∧ kH + kK ∧ kK . (2.15)

The IW contraction into the Poincaré algebra reduces to the following M.C. equations

kK → ΩkK , kH → kH and Ω → 0 , then dkK = kH ∧ kK , dkH = kH ∧ kH .(2.16)

These are not the equations (2.8). This contraction for the current is realized if a coset

element contains auxiliary coordinates Y µν in addition to the coset parameters Xµ: i.e. a

coset element and the one-form currents are functions of Xµ and Y µν . If they are rescaled

as Xµ → ΩXµ and Y µν → Y µν then the currents can be rescaled as kK → ΩkK and

kH → kH. But if a coset element contains only Xµ then rescaling Xµ → ΩXµ forces the

currents the following rescaling by the parity requirement

kK → ΩkK , kH → Ω2kH and Ω → 0 , then dkK = 0 , dkH = kK ∧ kK .(2.17)

These are the equations (2.8), and still represent the Poincaré algebra but in the different

gauge. We will use the algebra obtained in (2.17) to construct nonlocal conserved charges.

Our criterion is conservation of charges so far. At the end the obtained charges give the

correct algebra after the quantization in any case.
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2.3 Nonlocal charges

If we introduce the algebra [TA, TB ] = FC
ABTC corresponding to the structure coefficient in-

duced by the Noether current FC
AB in (2.8) and (2.9), then the covariant derivative operator

can be defined as

Dα = ∂α − JA
α TA → [∂α,Dα] = 0 and [Dα,Dβ] = 0 . (2.18)

These equations correspond to the current conservation law (2.4) and the “flatness” con-

dition (2.8) respectively. Then we follow the BIZZ procedure using with this covariant

derivative operator in (2.18). An infinite set of conserved nonlocal currents are obtained

by the covariant derivative Dα acting on the dual potential χ[N ]’s

J A
[N ]α = εαβ∂βχ A

[N ] , J A
[N+1]α = (Dαχ[N ])

A → ∂αJ A
[N+1]α = 0, N≥0 . (2.19)

Since χ[N ]’s are nonlocal, obtained conserved currents J[N ] are also nonlocal.

Now we will compute the nonlocal charges for a string in the flat background. We list

expressions of zero-th, first and second order nonlocal charges here:

J[0]
A
α = JA

α =

{

1
2πα′ ∂αXµ

1
2πα′ X

[µ∂αXν] (2.20)

J[1]
A
α =

{

1
2πα′ εαβ∂βXµ

1
2πα′ εαβX [µ∂βXν] − ∂αX [µχ

ν]
[0]

(2.21)

J[2]
A
α =

{

1
2πα′ ∂αXµ

1
2πα′ X [µ∂αXν] − ( 1

2πα′ )−1
(

J
[µ
[1]αχ

ν]
[0] + J

[µ
[0]αχ

ν]
[1]

) (2.22)

where εαβεβγ = δα
γ and ετσ = 1 = εστ .

Let us consider a closed string winding around some compact directions as

Xµ(σ + 2π) = Xµ(σ) + 2πRwµ , pµ =
nµ

R
, wµ, nµ ∈ Z , (2.23)

and it is quantized as

Xµ = xµ + α′pµτ + wµRσ +
√

α′

2

∑

n 6=0

i

n

(

αµ
ne−in(τ+σ) + α̃µ

ne−in(τ−σ)
)

.

It is required to write xµ = xµ
+ + xµ

− in such a way that they become canonical conjugates

of momenta and windings,
[

xµ
+, (pν + wνR/α′) /2

]

= iηµν =
[

xµ
−, (pν − wνR/α′) /2

]

. It is

also noted that there is no restriction on xµ
+ − xµ

− at this stage.

For the finite range of σ coordinate 0 ≤ σ ≤ 2π with the nontrivial winding (2.23), a

conserved charge is obtained by the integration along the following path (figure 1):

QA
[N ] =

∫ τ

−∞
dτ ′J[N ]

A
σ (τ ′, σ = 0) +

∫ 2π

0
dσJ[N ]

A
τ (τ, σ) +

∫ −∞

τ

dτ ′J[N ]
A
σ (τ ′, σ = 2π)

(2.24)
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Figure 1: The integration path.

and the dual potential χ defined in (2.19) is computed as

χA(τ, σ) = −
∫ σ

0
dσ′ JA

τ (τ, σ′) −
∫ τ

−∞
dτ ′ JA

σ (τ ′, σ = 0) . (2.25)

The resultant Noether charges, which are zero-the order charges, (2.5) are again listed

here:

Qµ
[0] = P̂µ = pµ , Qµν

[0] = M̂µν = x[µpν] +
i

2

∑

n 6=0

1

n

(

α[µ
n α

ν]
−n + α̃[µ

n α̃
ν]
−n

)

(2.26)

The first order nonlocal charges:

Qµ
[1] = −ωµR , Qµν

[1] = −x[µων]R − i
∑

n 6=0

1

n

(

α[µ
n α

ν]
−n − α̃[µ

n α̃
ν]
−n

)

(2.27)

The even order, 2N -th (N ≥ 1) order nonlocal charges:

Qµ
[2N ] = Qµ

[0] (2.28)

Qµν
[2N ] = Qµν

[0] + N∆Qµν
[even] , ∆Qµν

[even] = i
∑

n 6=0

1

n

(

α[µ
n α

ν]
−n + α̃[µ

n α̃
ν]
−n

)

and for the odd order, 2N + 1-th (N ≥ 1) order nonlocal charges:

Qµ
[2N+1] = Qµ

[1] (2.29)

Qµν
[2N+1] = Qµν

[1] + N∆Qµν
[odd] , ∆Qµν

[odd] = −i
∑

n 6=0

1

n

(

α[µ
n α

ν]
−n − α̃[µ

n α̃
ν]
−n

)

Independent components are zero-th and first order nonlocal charges for zero mode and

non-zero mode separately. The momentum, the winding number, the total Lorentz spin

and the relative Lorentz spin, which is the difference between the left mover spin and the

right mover spin, for zero mode and for non-zero modes are conserved separately.
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2.4 T-duality

T-duality transformation interchanges the momentum and the winding by interchanging

R ↔ 1/R. T-duality transformation in X(τ, σ) reduces the interchange τ ↔ σ which causes

nµ ↔ wµ , R ↔ 1/R , α̃µ
n ↔ −α̃µ

−n . (2.30)

The Noether charges after the T-duality transformation is given

Qµ
[0] = P̃µ = wµR , Qµν

[0] = M̃µν = x[µwν]R +
i

2

∑

n 6=0

1

n

(

α[µ
n α

ν]
−n − α̃[µ

n α̃
ν]
−n

)

. (2.31)

These Noether charges correspond to the first order nonlocal charges in the original back-

ground (2.27). Further higher order nonlocal charges after T-duality transformation are:

Qµ
[1] = −pµ , Qµν

[1] = −x[µpν] − i
∑

n 6=0

1

n

(

α[µ
n α

ν]
−n + α̃[µ

n α̃
ν]
−n

)

(2.32)

Qµ
[2N ] = Qµ

[0] , Qµν
[2N ] = Qµν

[0] + N∆Qµν
[even] , ∆Qµν

[even] = i
∑

n 6=0

1

n

(

α[µ
n α

ν]
−n − α̃[µ

n α̃
ν]
−n

)

Qµ
[2N+1] = Qµ

[1] , Qµν
[2N+1] = Qµν

[1] + N∆Qµν
[odd] , ∆Qµν

[odd] = −i
∑

n 6=0

1

n

(

α[µ
n α

ν]
−n + α̃[µ

n α̃
ν]
−n

)

The first order nonlocal charges in the T-dualized background correspond to the zero-th

order charges of the original background (2.26). The even and the odd order nonlocal

charges are interchanged by T-duality. The set of independent conserved charges is equiv-

alent before and after the T-duality transformation in a flat space background.

3. Type IIB pp-wave background

In this section we will compute the nonlocal charges for a closed string in the pp-wave

background explicitly. The isometry algebra is inhomogeneous SO(n), so we apply our gen-

eralized BIZZ procedure to obtain nonlocal charges. Before introducing nontrivial winding

modes for the T-duality transformation we present the nonlocal charges in the type IIB

pp-wave background.

3.1 Noether charges

The type IIB pp-wave background is given by

ds2 = 2dX+dX− + dXidXi − 4µ2XiXi(dX+)2 , i=1,...,8

(5)F = µdX+
(

dX1dX2dX3dX4 + dX5dX6dX7dX8
)

. (3.1)

The action for a string in this background is

S = − 1

4πα′

∫

d2σ
[

2∂αX+∂αX− − 4µ2XiXi∂αX+∂αX+ + ∂αXi∂αXi
]

i=1,...,8 . (3.2)

– 8 –
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Noether currents of the system are given by:



























J+
α = 1

2π∂αX+

J−
α = 1

2πα′

(

∂αX− − 4µ2XiXi∂αX+
)

J i
α = 1

2πα′

(

∂αXi cos 2µX+ − Xi∂α cos 2µX+
)

J i∗
α = 1

4πµ

(

∂αXi sin 2µX+ − Xi∂α sin 2µX+
)

J ij
α = 1

2πα′ X
[i∂αXJ ]

(3.3)

In the lightcone gauge X+ = p+τ the action becomes

S = − 1

4πα′

∫

d2σ
[

∂αXi∂αXi + µ̂2XiXi
]

, µ̂ = 2µp+ , i=1,...,8 (3.4)

and Virasoro constraints are
{

h = 2P−p+ + ẊiẊi + Xi′Xi′ + µ̂2XiXi = 0

t = p+X−′

+ ẊiXi′ = 0
(3.5)

P− = Ẋ− − 4µ2p+XiXi

with Ẋ = ∂τX and X ′ = ∂σX. The quantization in the lightcone gauge is performed as

Xi = xi cos µ̂τ + pi α
′

µ̂
sin µ̂τ + i

√

α′

2

∑

n 6=0

1

nρn

(

αi
ne−inσ + α̃i

neinσ
)

e−inρnτ

ρn =

√

1 +

(

µ̂

n

)2

(3.6)

with

[

xi, pj
]

= iδij ,
[

αi
n, αj

m

]

= nρnδijδn,−m =
[

α̃i
n, α̃j

m

]

. (3.7)

Noether charges are given as























































Q+
[0] = Q+ = p+

Q−
[0] = Q− = − 1

2p+



α′pipi +
µ̂2

α′
xixi +

∑

n 6=0

(αi
nαi

−n + α̃i
nα̃i

−n)





Qi
[0] = Qi = pi

Qi∗
[0] = Qi∗ = −p+xi

Qij
[0] = Qij = x[ipj] + i

2

∑

n 6=0

1

nρn
(α[i

nα
j]
−n + α̃[i

nα̃
j]
−n)

(3.8)

which satisfy the following pp-wave algebra:

[

Q−, Qi
]

= i4µ2

α′ Qi∗ ,
[

Q−, Qi∗
]

= −iα′Qi ,
[

Qi, Qj∗
]

= iδijQ+
[

Qij , Qk
]

= −iδk[iQj] ,
[

Qij , Qk∗
]

= −iδk[iQj]∗ ,
[

Qij , Qkl
]

= −iδ[i|[lQk]|j]

others = 0

(3.9)
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3.2 Nonlocal charges

One form currents constructed from the Noether currents (3.3) as J = dσαJα satisfy the

following equations:






















dJ+ = 0 , dJ− = 16πµ2J i∧J i∗

dJ i = −16πµ2

α′
J+∧J i∗ , dJ i∗ = 4πα′J+∧J i

dJ ij = 4πα′

(

J i∧Jj +
4µ2

α′2
J i∗∧Jj∗

)

(3.10)

They are “flatness” condition and the consistency condition ddJ = 0 is also satisfied, so

the covariant derivative operator (2.18) can be constructed. The structure constant read

off from the above equations (3.10) is different from the one of the pp-wave algebra (3.9)

as expected in the subsection 2.1.

According to the procedure (2.19) the first order nonlocal currents are given by











































J[1]
+
α = εαβJ+β

J[1]
−
α = εαβJ−β − 8πµ2

(

J i
αχi∗

[0] − J i∗
α χi

[0]

)

J[1]
i
α = εαβJ iβ + 8πµ2

α′

(

J+
α χi∗

[0] − J i∗
α χ+

[0]

)

J[1]
i∗
α = εαβJ i∗β − 2πα′

(

J+
α χi

[0] − J i
αχ+

[0]

)

J[1]
ij
α = εαβJ ijβ − 2πα′

(

J
[i
αχ

j]
[0] +

4µ2

α′2
J [i∗

α χ
j]∗
[0]

)

(3.11)

where the dual potential χ[0]’s are given as:

χ+
[0] = − 1

2π
p+σ (3.12)

χi
[0] = − 1

2π
piσ− i

4π
√

2α′

∑

n6=0

1

n

((

1+
µ̂

nρn

)

eiµ̂τ +

(

1− µ̂

nρn

)

e−iµ̂τ

)

(

αi
ne−inσ−α̃i

neinσ
)

e−inρnτ

χi∗
[0] =

1

2π
p+xiσ−

√
α′

8πµ
√

2

∑

n6=0

1

n

((

1+
µ̂

nρn

)

eiµ̂τ −
(

1− µ̂

nρn

)

e−iµ̂τ

)

(

αi
ne−inσ−α̃i

neinσ
)

e−inρnτ

The first order nonlocal charges are obtained as:






























Q−
[1] =

1

2p+

∑

n 6=0

1

ρn

(

1 + 2

(

µ̂

n

)2
)

(

αi
nαi

−n − α̃i
nα̃i

−n

)

Qij
[1] = i

∑

n 6=0

1

n

(

α[i
nα

j]
−n − α̃[i

nα̃
j]
−n

)

others = 0

(3.13)

where X−′

in J −
[1]τ is determined from the Virasoro condition t = 0 in (3.5). In the ref. [26]

this term was set to be zero because of the total derivative of σ, but there is a non-zero

contribution determined by the Virasoro condition.

The second order nonlocal current is given by

J[2]
A
α = JA

α − 1

2
FA

BC

(

εαβJBβχC
[0] + JB

α χC
[1]

)

(3.14)
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and the second order nonlocal charges are obtained as


































Q−
[2] − Q−

[0] = − 1

p+

∑

n 6=0

(

µ̂

nρn

)2
(

1 + 2

(

µ̂

n

)2
)

(

αi
nαi

−n + α̃i
nα̃i

−n

)

Qij
[2] − Qij

[0] = i
∑

n 6=0

1

nρn

(

1 + 2

(

µ̂

n

)2
)

(

α[i
nα

j]
−n + α̃[i

nα̃
j]
−n

)

others = 0

(3.15)

These charges (3.15) are different from Q[0] in (3.8). Higher order nonlocal charges are

obtained by this computation by the procedure (2.19), and it is expected that coefficients

on the nonlocal charges are different in each order unlike the flat case (2.28) and (2.29).

There exist an infinite number of independent conserved charges exist in the pp-wave

background contrast to the flat case.

4. T-dual pp-wave backgrounds

Now we will examine the nonlocal charges for closed strings with a winding mode in the

pp-wave backgrounds. We will compare the nonlocal charges before and after the T-duality

transformation.

4.1 Michelson’s cycle

In order to examine T-duality a spacelike circle is needed to compactify it. First we rewrite

IIB pp-wave coordinate in (3.1) in terms of xµ, then change variables as































x+ = X+

x− = X− − 2µX1X2

xI = XI , I=3,...,8
(

x1

x2

)

=

(

cos 2µX+ − sin 2µX+

sin 2µX+ cos 2µX+

)(

X1

X2

)

(4.1)

to get

ds2 = 2dX+dX− − 4µ2XIXI(dX+)2 + dXidXi − 8µdX+X2dX1 , i=1,...,8 I=3,...,8

(5)F = µdX+
(

dX1dX2dX3dX4 + dX5dX6dX7dX8
)

. (4.2)

The action of a string in the Michelson’s pp-wave geometry is given by

SIIB =

= − 1

4πα′

∫

d2σ
[

2∂αX+∂αX−−4µ2XIXI∂αX+∂αX++∂αXi∂αXi − 8µX2∂αX1∂αX+
]

i=1,2,3,...,8 , I=3,...,8 . (4.3)

Target space indices −, 1, 2 are renamed in such a way that they coincide translations and

rotations of the new coordinate basis (4.2). We compactify a spacelike S1 along the cycle

S+
12 whose isometry kS+

12

= ke1
+ 1

2µke∗
2
. It breaks symmetry from SO(4) × SO(4) into

– 11 –



J
H
E
P
0
7
(
2
0
0
6
)
0
2
9

SO(2) × SO(4), so 1 + 6 isometries survive. Some translations and boosts are also broken,

and we list survived isometries in Michelson’s notation corresponding to our notation up

to normalization:

ke− ⇔ k
+ = ∂

∂X−

ke+
− 2µkM12

⇔ k
− = ∂

∂X+

ke1
+ 1

2µ
ke∗

2
= kS+

12

⇔ k
1 = ∂

∂X1

ke2
+ 1

2µke∗
1

= kS+

21

⇔ k
2 = (cos 4µX+) ∂

∂X2 + (sin 4µX+) ∂
∂X1 + 4µ(sin 4µX+)X2 ∂

∂X−

ke1
− 1

2µ
ke∗

2
= kS−

12

⇔ k
2∗ = (cos 4µX+) ∂

∂X1 − (sin 4µX+) ∂
∂X2 + 4µ(cos 4µX+)X2 ∂

∂X−

keI
⇔ k

I = (cos 2µX+) ∂
∂XI + 2µ(sin 4µX+)XI ∂

∂X−

ke∗
I
⇔ k

I∗ = (sin 2µX+) ∂
∂XI − 2µ(cos 4µX+)XI ∂

∂X−

(4.4)

A Killing vector,

kS−

21

= ke2
− 1

2µ
ke∗

1
⇔ k

1∗ = ∂
∂X2 + 4µX1 ∂

∂X−
, (4.5)

becomes multivalued after compactification of X1 direction so ill-defined. There are 17

isometries survived and they are noncompact Killing vectors except kS+

12

. This geometry

is totally 1 + 6 + 17 = 24 dimensional group. The Noether currents, JA
α , corresponding to

the Killing vectors k
A are given as:



































































J+
α = 1

2π∂αX+

J−
α = 1

2πα′

(

∂αX− − 4µ2XIXI∂αX+ − 4µX2∂αX1
)

J1
α = 1

2πα′

(

∂αX1 − 4µX2∂αX+
)

J1∗
α = 1

4πµ

(

∂αX2 + 4µX1∂αX+
)

J2
α = 1

2πα′

(

∂αX2 cos 4µX+ + ∂αX1 sin 4µX+
)

J2∗
α = 1

4πµ

(

∂αX2 sin 4µX+ − ∂αX1 cos 4µX+
)

JI
α = 1

2πα′

(

∂αXI cos 2µX+ − XI∂α cos 2µX+
)

JI
α
∗ = 1

4πµ

(

∂αXI sin 2µX+ − XI∂α sin 2µX+
)

J IJ
α = 1

2πα′X[I∂αXJ ]

(4.6)

where J1∗
α is the one for the non-compact case although it will be compactified soon later.

In the lightcone gauge the action for a string in the Michelson’s pp-wave geometry

becomes

SIIB = − 1

4πα′

∫

d2σ
[

∂αXi∂αXi + µ̂2XIXI + 4µ̂X2Ẋ1
]

µ̂ = 2p+µ , i=1,2,3,...,8 , I=3,...,8 , (4.7)

and the Virasoro constraints are
{

hIIB = 2P−p+ + ẊiẊi + Xi′Xi′ + µ̂2XIXI = 0

tIIB = p+X−′

+
(

Ẋ1 − 2µ̂X2
)

X1′ + Ẋ2X2′ + ẊIXI′ = 0
(4.8)

P− = Ẋ− − 4µ2p+XIXI − 4µX2Ẋ1 .
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A closed string with a winding mode X1(σ+2π) = X1(σ)+2πRw can be quantized as

XI = xI cos µ̂τ +
α′

µ̂
pI sin µ̂τ + i

√

α′

2

∑

n6=0

1

nρn

(

αI
ne−inσ + α̃I

ne+inσ
)

e−inρnτ

X1 + iX2 = wRσ + e−iµ̂τ







x cos µ̂τ +
α′

µ̂
p sin µ̂τ + i

√

α′

2

∑

n6=0

1

nρn

(

αne−inσ + α̃neinσ
)

e−inρnτ







X1 − iX2 = wRσ + eiµ̂τ







x̄ cos µ̂τ +
α′

µ̂
p̄ sin µ̂τ + i

√

α′

2

∑

n6=0

1

nρn

(

ᾱne−inσ + ˜̄αneinσ
)

e−inρnτ







ρn =

√

1 +
µ̂2

n2
(4.9)

with

[

xI , pJ
]

= iδIJ , [x, p̄] = i = [x̄, p]
[

αI
n, αJ

m

]

= nρnδIJδn,−m =
[

α̃I
n, α̃J

m

]

(4.10)

[αn, ᾱm] = 2nρnδn,−m = [α̃n, ˜̄αm] .

The Noether charges, which are the zero-th order charges, are followings:























































































































Q+
[0] = p+

Q−
[0] = − 1

2p+





∑

i=2,3,...,8

(

α′pipi +
µ̂2

α′
xixi

)

+
1

α′
(wR)2

+
∑

n 6=0

{

(αI
nαI

−n + α̃I
nα̃I

−n) +

(

1 +
µ̂

nρn

)

(αnᾱ−n + α̃n ˜̄α−n)

}





Q1
[0] = p1

Q1∗
[0] = p+

(

x1 + 2πwR
)

Q2
[0] = p2

Q2∗
[0] = p+x2

QI
[0] = pI

QI
[0]

∗ = −p+xI

QIJ
[0] = −x[IpJ ] + i

2

∑

n 6=0

1

nρn

(

α[I
n α

J ]
−n + α̃[I

n α̃
J ]
−n

)

(4.11)

where zero mode variables are rewritten as

{

p1 = 1
2(p + p̄) + i µ̂

2α′ (x − x̄) , x1 = 1
2 (x + x̄) − i α′

2µ̂(p − p̄)

p2 = 1
2i(p − p̄) − µ̂

2α′ (x + x̄) , x2 = i
2 (x − x̄) − α′

2µ̂(p + p̄)
(4.12)

[

x1, p1
]

= i =
[

x2, p2
]

. (4.13)

The above charges excluding Q1 and Q1∗ make a closed algebra. After compactify X1

direction as X1 ∼ X1 + 2πwR the winding mode breaks Q1∗
[0] symmetry of the vacuum.
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The one form currents made from the Noether currents in (4.11) as JA = dσαJA
α satisfy

the following M.C. equations:































dJ+ = 0, dJ− = 16πµ2
(

J2∧J2∗ + JI∧JI∗
)

dJ1 = 16πµ2

α′ J+∧J1∗, dJ1∗ = −4πα′J+∧J1

dJ2 = −16πµ2

α′ J+∧J2∗, dJ2∗ = 4πα′J+∧J2

dJI = −16πµ2

α′ J+∧JI∗, dJI∗ = 4πα′J+∧JI

dJ IJ = 4πα′
(

JI∧JJ + 4µ2

α′2 JI∗∧JJ∗
)

(4.14)

The structure constant read off from these M.C. equations is different from the algebra

generated by charges (4.11) again. The consistency ddJ = 0 corresponding to the Jacobi

identity is satisfied without J1 and J1∗. Then compactification of X1-direction is possible

consistently. The first order conserved nonlocal charges are obtained as follows:



























































Q1
[1] = −wR

α′

Q−
[1] = 1

2p+

∑

n 6=0

1

ρn

{(

1 + 2

(

µ̂

n

)2
)

(αI
nαI

−n − α̃I
nα̃I

−n)

+

(

ρn +
µ̂

n

)2

(αnᾱ−n − α̃n ˜̄α−n)

}

Qij
[1] = i

∑

n 6=0

1

n

(

α[i
nα

j]
−n − α̃[i

nα̃
j]
−n

)

others = 0

(4.15)

It is essential to use the integration path in (2.24) to obtain consistent charges especially

Q−
[1], Q

2
[1], Q

2∗
[1].

4.2 T-duality

T-duality of the type IIB nine dimensional geometry (4.2) along X1-direction transforms

into the type IIA background . For the pp-wave background the NS/NS two-form potential

B and the R/R three form potential(3)C of the type IIA theory are responsible for the

nontrivial geometry the type IIB theory,

ds2 = 2dX+dX− − 4µ2
(

XIXI + 4(X2)2
)

(dX+)2 + dXidXi , i=1,2,...,8, I=3,...,8

(3)C = 8µX+dX2dX3dX4 , B = −4µX2dX1dX+ . (4.16)

The action for a string in this IIA background is

SIIA = − 1

4πα′

∫

d2σ
[

2∂αX+∂αX− − 4µ2
(

XIXI + 4(X2)2
)

∂αX+∂αX+

+ ∂αXi∂αXi + 4µX2εαβ∂αX1∂βX+
]

. (4.17)
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The Noether currents in the IIA pp-wave background are given as:































































J+
α = 1

2π
∂αX+

J−
α = 1

2πα′

{

∂αX− − 4µ2
(

XIXI + 4(X2)2
)

∂αX+ − 2µX2εαβ∂βX1
}

J1
α = 1

2πα′

(

∂αX1 + 4µX2εαβ∂βX+
)

J1∗
α = 1

2π

(

X+∂αX1 − X1∂αX+ + 2µX2εαβ∂β(X+)2
)

J2
α = 1

4πα′

(

∂αX2 cos 4µX+ − X2∂α cos 4µX+
)

J2∗
α = − 1

8πµ

(

∂αX2 sin 4µX+ − X2∂α sin 4µX+
)

JI
α = 1

2πα′

(

∂αXI cos 2µX+ − XI∂α cos 2µX+
)

JI∗
α = 1

4πµ

(

∂αXI sin 2µX+ − XI∂α sin 2µX+
)

J IJ
α = 1

2πα′X
[I∂αXJ ]

(4.18)

In the lightcone gauge the action becomes

SIIA = − 1

4πα′

∫

d2σ
[

∂αXi∂αXi − µ̂2
(

XIXI + 4(X2)2
)

− 4µ̂X2X1′
]

, (4.19)

and the Virasoro constraints are
{

hIIA = 2P−p+ + ẊiẊi + Xi′Xi′ + µ̂2XIXI + 4µ̂2(X2)2 + 4µ̂X2X1′ = 0

tIIA = p+X−′

+ ẊiXi′ = 0
(4.20)

P− = Ẋ− − 4µ2p+
(

XIXI + 4(X2)2
)

− 4µX2X1′ .

The quantization is given by

X1 = w\Rσ + x\ + α′p\τ

+

√
α′

2
√

2

∑

n 6=0

1

n

{

(−1 +
µ̂

nρn
)(αne−inσ + α̃neinσ)e−iµ̂τ

+(1 +
µ̂

nρn
)(ᾱne−inσ + ˜̄αneinσ)eiµ̂τ

}

e−inρnτ (4.21)

X2 = −w\R

2µ̂
+ x2 cos 2µ̂τ +

α′

µ̂
p2 sin 2µ̂τ

+

√
α′

2
√

2

∑

n 6=0

i

nρn

{

(αne−inσ − α̃neinσ)e−iµ̂τ + (ᾱne−inσ − ˜̄αneinσ)eiµ̂τ
}

e−inρnτ

with
[

x\, p\
]

= i in addition to XI in the (4.9).

The Noether charges in the IIA background are given as


















































Q1
[0] = p\

Q1∗
[0] = −p+(x\ + Rw\π)

Q−
[0] = − 1

2p+





∑

i=2,3,...,8

(

α′pipi +
µ̂2

α′
xixi

)

+ α′(p\)2

+
∑

n 6=0

{

(αI
nαI

−n + α̃I
nα̃I

−n) +

(

1 +
µ̂

nρn

)

(αnᾱ−n + α̃n ˜̄α−n)

}





(4.22)
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and Q2
[0], Q

2∗
[0], Q

I
[0], Q

I∗
[0], Q

IJ
[0] are the same with the IIB case in (4.11). Comparing the

lightcone Hamiltonian in the type IIA background, Q−
[0], in (4.22) with the one in the type

IIB background in (4.11) leads to

Q−
[0]IIA = Q−

[0]IIB ⇔ 1

α′
(wR)2 = α′(p\)2 . (4.23)

Then the zero-th order momentum charge Q1
[0] in the IIA background corresponds to the

first order nonlocal momentum charge Q1
[1] in the IIB background in (4.15)

Q1
[0]IIA = −Q1

[1]IIB . (4.24)

In order to make this correspondence complete as

Q1∗
[0]IIA = −Q1∗

[1]IIB , (4.25)

let us add a Wess-Zumino term in the “IIB” action

LIIB;WZ =
1

2
X\εαβ(∂αJ1

β +
4µ

2πα′
∂αX2∂βX+) (4.26)

where X\ is a Lagrange multiplier to ensure the M.C. equation of J1 in (4.14). Under the

k
1∗ = ∂

∂X2 + 4µX1 ∂
∂X−

transformation the variation of LIIB;WZ gives a new contribution

to the current J1∗
IIB as

δλ1∗LIIB;WZ = ∂αλ1∗∆J1∗
α , ∆J1∗

α = − 1

2π
X\εαβ∂βX+ . (4.27)

Then the first order nonlocal charge in the IIB background becomes Q1∗
[1]IIB = p+x\ where

the zero mode of X\ is x\. The commutator between Q1
[1]IIB and Q1∗

[1]IIB is realized as same

as the one of Q1
[0]IIA and Q1∗

[0]IIA. The zero mode of X\ is conjugate of w,
[

x\, wR/α′
]

= i

with x1
+ − x1

− = x\ in the IIB background side. This WZ term (4.26) is turns out to be

analogous to the Buscher T-duality transformation.

It is interesting that the M.C. equations for the one form current constructed from the

IIA Noether currents (4.18) contain extra terms because of the IIA WZ term in (4.17). In

order to compute the nonlocal currents in this case this anomaly must be treated consis-

tently. We leave this problem for future investigation.

5. Conclusions and discussion

We have obtained nonlocal charges in terms of oscillators in a flat background and the IIB

and IIA pp-wave backgrounds. For the flat background we have shown that the set of inde-

pendent conserved nonlocal charges is the same before and after T-duality transformation

with interchanging odd and even-order charges; for example the zero-th order charge in the

T-dualized flat background coincides with the ones in the original background. T-duality

interchanges the momenta and the winding number and the total Lorentz spin and the

relative Lorentz spin which is the difference between the left mover’s spin and the right
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mover’s one. Among an infinite set of nonlocal charges independent charges are the zero-th

and first order charges which are the momenta and the winding number of zero mode and

the total spin and the relative spin for zero mode and non-zero modes separately.

For the pp-wave background we have computed the nonlocal charges and obtained

expressions of the zero-th, first and second order ones in terms of oscillators. Contrast to

the flat case coefficients of the mode expansion in nonlocal charges are different, so there

exist an infinite set of independent nonlocal charges for the pp-wave case. We have shown

that the zero-th order charges in the T-dualized pp-wave background, the IIA pp-wave

background, are included as a part of an infinite set of nonlocal charges in the original IIB

pp-wave background. Since we perform the lightcone quantization the lightcone Hamilto-

nians for the type IIB and the type IIA backgrounds are equal by T-duality. This equality

leads to identification of the modes in both sides. As a result the zero-th order momentum

charge in the IIA pp-wave side, Q1
[0]IIA, corresponds to the first order nonlocal momentum

charge in the IIB pp-wave side, Q1
[1]IIB. In order to make this correspondence complete the

zero-th order charge in the IIA pp-wave side, Q1∗
[0]IIA, should correspond to the non-zero

value of the first order charge Q1∗
[1]IIB in the IIB pp-wave side. Then we introduce a WZ

term for the “IIB” pp-wave background in such a way that this term causes non-zero value

of Q1∗
[1]IIB satisfying the corresponding algebra. It turns out that the Lagrange multiplier

of the WZ term is a variable conjugate to the winding mode. This term is nothing but

the term used in the Buscher T-duality transformation. In another word one can intro-

duce the conjugate coordinate to the winding mode by adding the WZ term à la Buscher’s

T-duality transformation. The completeness of this correspondence requires the IIB side

to add the Bµν field as a target space interpretation of the WZ term and to include the

relative coordinate x\ = x+ − x−, so these dual degrees of freedom are hidden in also the

“IIB” side. Then it is natural to formulate string theories by “two-vierbein formalism” [32]

and it may be generalize to the general field theories. It may be interesting to relate the

issue to the finite size effect of the integrable system [33] and other properties [34].

In this paper we clarified the procedure of constructing the nonlocal charges for in-

homogeneous SO(n) cosets such as a flat and the pp-wave background cases; the basic

currents which satisfy the conservation law are set to be the Noether currents of the ac-

tion, and the “flatness” condition is examined. Based on these currents nonlocal charges

are constructed inductively. The conserved charges are obtained by the integration along

the boundary of the semi-infinite strip cut open the cylinderical worldsheet. We could not

compute the higher order nonlocal charges in the type IIA pp-wave background, since the

“flatness” condition of the IIA Noether currents includes extra terms caused by the WZ

term. We know that the WZ term produces a topological center in the Noether charge

algebra, where charges can be constructed but the ground state is only invariant under

a part of the symmetries. If this IIA theory and the IIB theory are really T-dual, then

the infinite set of nonlocal charges also exist in both theories. So there may be a further

generalization of the procedure constructing nonlocal charges for “non-flat” systems.

Nonlocal charges carry T-dual information as we have shown. T-duality in the pp-wave

space may trace back to the one in the AdS space where an infinite set of nonlocal charges

exist. So application of our analysis to the AdS space may be possible in the classical
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level. It is curious how nonlocal charges in the holographic dual theories realize T-dual

information. Generalization involving U-duality may be interesting, and we leave these

problem for future investigation.
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