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ABSTRACT: We obtain sets of infinite number of conserved nonlocal charges of strings in a
flat space and pp-wave backgrounds, and compare them before and after T-duality trans-
formation. In the flat background the set of nonlocal charges is the same before and after
the T-duality transformation with interchanging odd and even-order charges. In the IIB
pp-wave background an infinite number of nonlocal charges are independent, contrast to
that in a flat background only the zero-th and first order charges are independent. In the
ITA pp-wave background, which is the T-dualized compactified IIB pp-wave background,
the zero-th order charges are included as a part of the set of nonlocal charges in the IIB
background. To make this correspondence complete a variable conjugate to the winding
number is introduced as a Lagrange multiplier in the IIB action a la Buscher’s transforma-

tion.
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1. Introduction

Integrability is one of the most important guiding principles to find correspondences beyond
the BMN limit [fl] of AdS/CFT correspondence. After generalizations of BMN’s work [B, B
the Bethe ansatz was brought to use in this problem [, and integrable spin chain models
have been shown to describe semiclassical spinning strings [[j] as well as superconformal
Yang-Mills theories [fi]. Those techniques are used to examine the correspondence between
the string energy spectrum and the dilatation operator [i, §] (see [[] for review). For an
integrable system conserved quantities are not only the above energy operator but also an
infinite set of conserved nonlocal charges [[I(]. The existence of an infinite set of conserved
nonlocal charges implies the absence of particle production and the factorization of the
S-matrix [[[{, [].

Brezin, Itzykson, Zinn-Justin and Zuber (BIZZ) gave a simple derivation of these
nonlocal charges [1): Assume that one has a set of conserved and “flat” currents J,,
OpJ® = 0 and 60‘5(80,J5 — JaJp) = 0. Then an infinite set of nonlocal currents Jjn)q
are constructed inductively. The zero-th order current is set to be the Noether current
Jioja = Ja. The first order current, Jyjq, is determined by the “flatness” condition as
eaﬁ(ﬁan — JoJg) = aaj[‘ﬁ = 0 where the nonabelian structure of J, gives rise to the
nonlocality of J[j),. The “flatness” condition is a “dual” equation of the two-dimensional



worldsheet which is closely related to the Buscher T-duality [[[]. In this paper we examine
whether the two-dimensional dual formulation required in the nonlocal charges shares any
concept with the two-dimensional transformation of T-duality.

Bena, Roiban and Polchinski showed the existence of an infinite set of conserved nonlo-
cal charges of a superstring in the AdS5xS® background [[4], while the one for the bosonic
part was shown in [[] and the one in manifestly s-invariant way was shown in [L§]. Ad-
ditional discussion of nonlocal charges of strings in the AdS background can be found
in refs. [I7-R4]. For an integrable model there exist a spectral parameter which relates
an infinite set of “local” charges and an infinite set of nonlocal charges. Recently it has
been shown that an infinite number of conserved “local” charges for a superstring in the
AdS5xS® background are combinations of the Virasoro constraint and the x symmetry con-
straints [R§] which govern the target space field equations. So it is natural to expect that the
nonlocal charges reflect the spacetime isometry and stringy symmetry of the target space.
In order to figure out physical meanings of nonlocal charges we compute nonlocal charges
explicitly. In this paper a flat space background and the IIB and ITA pp-wave backgrounds
are examined so the nonlocal integration can be performed in terms of oscillators.

The existence of an infinite set of nonlocal charges in the pp-wave background was
shown by Alday [Rd]. We will further develop the work by (1) computing higher order
nonlocal charges with respect to complete set of isometry generators, and (2) computing
nonlocal charges of a string in the pp-wave background before and after T-dual trans-
formation. The IIB pp-wave background is compactified and T-duality transformation is
performed as [R7, then the string in the IIA pp-wave background is quantized [§, RY.
For the ITA background we will focus on the Noether charges which are the zero-th order
charges, and we will examine whether they are related to the nonlocal charges of the IIB
background.

We also clarify the procedure of constructing nonlocal charges of strings in a flat and
the pp-wave background which are described by the inhomogeneous O(n) nonlinear sigma
model. The BIZZ procedure [[[J was originally applied to a homogeneous O(n) non-linear
sigma model; the nonlocal charges are systematically constructed from a conserved and
“flat” current. This current is a O(n) left-invariant current and satisfies the Maurer-Cartan
(M.C.) equation for the o(n) algebra which is the “flatness” condition. For a string in a
flat background the geometry may be regarded as a coset sigma model of the Poincaré
group over the Lorentz group and the string coordinate is the coset parameter. But the
left-invariant current J, = g~ 10,9 of a coset element g(X*) = exp(iX*P,) neither has
a Lorentz generator component nor satisfies the M.C. equation for the Poincaré algebra,
because the coset algebra is abelian, [P,, P,| = 0. So the BIZZ procedure is not applicable
naively to a string in a flat space. On the other hand the flat background is obtained
by the Inéni-Wigner (IW) contraction of an AdS space represented by the coset of the
homogeneous SO(n,2) group over the SO(n, 1), then one-form currents obtained by the
IW contraction satisfy the Poincaré M.C. equation. For the AdS space before the TW
contraction the conserved and “flat” current is nothing but the Noether current of the
action. From above two facts we begin with Noether currents as the conserved currents
for a flat and pp-wave spaces, and we will examine whether they satisfy the “flatness”



condition corresponding to the background isometries. Using these conserved and “flat”
currents we will construct an infinite set of conserved nonlocal currents and charges in a
flat and pp-wave backgrounds.

We also point out how to define the integration path for conserved charges of a closed
string with winding modes. For a conserved current d,J% = 0 one utilizes a dual potential
x such that J, = eaﬁaﬁ X, but this x is a single-valued function only on a simply connected
region. Therefore we define the potential y, and hence the nonlocal current, on a semi-
infinite strip cut open the cylinderical worldsheet. The conserved charges are given by
integration along the boundary path of the semi-infinite strip.

The organization of the paper is as follows. In section 2 the current conservation
and the “flatness” condition for a string in a flat background are examined and a general
argument of the Noether current for inhomogeneous backgrounds is presented. By the
BIZZ procedure we construct nonlocal charges and compare them before and after the
T-duality transformation. In section 3 we compute nonlocal charges of a string in the
type 1IB pp-wave background and write down concrete expressions for zero-th, first and
second order. In section 4 T-duality transformation on the Michelson’s cycle is performed
to obtain the type IIA pp-wave background, and nonlocal charges before and after the
T-duality transformation are computed. From the completeness of this correspondence, a
conjugate coordinate to the winding mode is introduced by adding the Wess-Zumino term
in the type IIB action which corresponds to the Buscher T-duality transformation.

2. Flat background

The action of a string in a flat background has not only the translational symmetry but
also the Lorentz symmetry. Although the translational group is abelian, considering the
whole Poincaré group gives nontrivial structure of the nonlocal charges especially under
T-duality. At first we will clarify the Noether current for inhomogeneous SO(n) cosets and
examine the procedure of constructing nonlocal charges. Then we will compute nonlocal

charges and compare them under T-duality.

2.1 Noether charges

The action for a string in a flat space is given by

g1 / 20 N hhP 0, X103 X 1y, (2.1)

4o

where h,g is the worldsheet metric and the conformal gauge v/ —hh®? = 3P is chosen from

now on. A closed string is quantized as

XH = gt 4 O/pMT + /%’ Z % <a567in(7+0) + dlée*in(ﬂ-fa))
n#0
[2#,p¥] = in" . [, @] = My, =[G, G : (2:2)

Noether currents under the translation and the Lorentz rotation are

Pl =310, X1, MY = Xkg, xV (2.3)

T 2wa/



satisfying the conservation law
O*PY =0=0"ML" . (2.4)

Noether charges are given by
. 27
Pt = / do P! = pt
0

2m .
. 1
N = / do MM = gl ¢ % >~ (a,&‘aﬂn + d,&‘di]n> (2.5)
0 n#0
satisfying the Poincaré algebra

[M;w, Mpx] — il el [MHV’ pp} — il p¥ (2.6)

The structure constant of the Poincaré algebra in (B.§) is denoted by fS, in [T,,Ty] = f5,T¢
with T, = (P, M),

Next let us introduce the one forms by multiplying the one form basis as
JH =do* Pl | JH = de* ML, (2.7)
then we act the exterior derivative on them
dJt =0, dJ" = dwd JF ATV (2.8)

In addition to the equations (R.§) the consistency dd.J 4 = 0 allows to regard the Noether
currents (2.J) or (R.7) as currents on a group manifold. If we read off the “structure

constant” from (R.§) as
1
dJ¢ = §F§BJA ANIB g = g, Ty (2.9)

then this structure constant FEB is different from the one of the Poincaré algebra f7,. This
is common for the inhomogeneous spaces such as a flat space and pp-wave spaces, unlike
AdS spaces. At first we explain this feature and then we will use this structure constant
FACB to obtain the nonlocal charges.

2.2 Noether currents for inhomogeneous SO(n) cosets

Consider a G/H coset sigma model with identification g(z) ~ g(x)h(x), g(z) € G, h(x) €
H. Let G and H be the Lie algebra of G and H, and let G = 'H @& K. We assume that the
coset is a symmetric space, that is, there exist a ‘parity’ transformation 6 such that

O(H)=+H, §(K)=-K. (2.10)
As in [14], define

Jo =9 '00g, Jo=Hs+ K, (2.11)



with Hy € H, K, € K. The Lagrangian is given by

L= —iTraaMaaM’l, M=g-0(g"
= TrK K. (2.12)
If the trace is non-degenerate on K, one can derive the equation of motion
0K+ [Hy, K*1=0. (2.13)
Then it follows that ko = gK.g~ " is a conserved current:
0ak*=0. (2.14)

In general k, is invariant under the local gauge transformation, g(xz) — g(z)h(x), and is
identified as the Noether current of the coset model. The Noether current k, has both H
and K components unlike K, which has only K components. However, if K is abelian, k,
belongs to K and has no H components. Therefore, in this case k, constructed above does
not exhaust all the Noether currents of the model. In our case the bosonic string action in
the flat space is regarded as the coset sigma model of the Poincaré group over the Lorentz
group. Since the translation group is abelian, the conserved currents constructed as kg
only contain d,X*, the Noether currents for the translation, but not those for the Lorentz
rotations.

For a supersymmetric system the coset is not a symmetric space anymore because of
the superalgebra {Q,Q} = P. The ‘parity’ is modified to four-fold grading [B0, B]], and
the conserved current is not simply gK,g~ ' but with the x-symmetric modification 4.

Let us consider a flat space as a coset ISO(D,1)/SO(D — 1,1) obtained by the IW
contraction of a coset SO(D,1)/SO(D—1,1). We begin with a coset element g € G/H with
G =S0(D,1) and H = SO(D —1,1). The Noether current has both H and X components
as k = ky + ki with ky € H and ki € K. They satisfy the following M.C. equation

dkx =k Nk, dky =k Nk + ke N ke . (2.15)
The IW contraction into the Poincaré algebra reduces to the following M.C. equations
ki — Qkic , ky — ky and Q — 0 , then dkx = ky Nk , dky = kx Nk (2.16)

These are not the equations (R-§). This contraction for the current is realized if a coset
element contains auxiliary coordinates Y#* in addition to the coset parameters X*: i.e. a
coset element and the one-form currents are functions of X# and Y#”. If they are rescaled
as X* — QX* and Y — YH then the currents can be rescaled as kx — Qkx and
k1 — ky. But if a coset element contains only X* then rescaling X* — QX* forces the
currents the following rescaling by the parity requirement

ki — Qki k:H—>QQk:H and Q@ — 0, then dkx =0, dky=kcNkc .(2.17)

These are the equations (R.§), and still represent the Poincaré algebra but in the different
gauge. We will use the algebra obtained in (R.17) to construct nonlocal conserved charges.
Our criterion is conservation of charges so far. At the end the obtained charges give the
correct algebra after the quantization in any case.



2.3 Nonlocal charges

If we introduce the algebra [T, Tg] = FACBTC corresponding to the structure coefficient in-
duced by the Noether current F g in (B-§) and (.9), then the covariant derivative operator

can be defined as
Dy =00 —JAT4 — [0% Do) =0 and [D,,Ds] = 0. (2.18)

These equations correspond to the current conservation law (R.4) and the “flatness” con-
dition (R.§) respectively. Then we follow the BIZZ procedure using with this covariant
derivative operator in (B.1§). An infinite set of conserved nonlocal currents are obtained

by the covariant derivative D, acting on the dual potential x|n)’s

Tinfe = cas® X3+ Tivetla = Paxin)® = Tyifla =0, n20.  (2:19)

Since x[n’s are nonlocal, obtained conserved currents J|y) are also nonlocal.
Now we will compute the nonlocal charges for a string in the flat background. We list
expressions of zero-th, first and second order nonlocal charges here:

o
o OaX (2.20)

gt = ={ 7

5XM
A 2o Eaﬁa
= 2.21
Ta { L e XIoP X" — 9, X[MX’[/O]] (2.21)

1, xn
T = 2”10‘ LA vl I T N TR (2.22)
P X V06X = (527) <J[] [01+J[01a><[1])

where eaﬁem = 5?/‘ and €77 =1 = ¢,,.
Let us consider a closed string winding around some compact directions as

m
XH(o +27) = XP(0) + 2rRw* |, ph = % L whnteD (2.23)

and it is quantized as
XH = gk 4+ o pM’T + whRo + /o Z (aue—zn T+0) + dge—in(r—0)>
n;ﬁO

It is required to write z# = 2/, + 2" in such a way that they become canonical conjugates
of momenta and windings, [z4, (p” + w’R/d/) /2] = ip*” = 2", (p¥ —wYR/d/) /2]. Tt is
also noted that there is no restriction on z!, — 2” at this stage.

For the finite range of o coordinate 0 < o < 27 with the nontrivial winding (2.23), a
conserved charge is obtained by the integration along the following path (figure f):

T 2m —00
Q[f}v} = / dT/j[N]f(T/,J =0) +/0 do*j[mf(T,J) + / dT/j[N}f(T', o =2r)
(2.24)



Figure 1: The integration path.

and the dual potential x defined in (P.19) is computed as
xA(r,0) = —/ do’ JA(1,0") —/ dr' JA ' 0 =0). (2.25)
0 —00

The resultant Noether charges, which are zero-the order charges, (B.§) are again listed
here:

. 1
M v [ 1/] - [ 1/] N[ NV]
Q[o] = PH =pH | [0] = M* = glipVl 4 — 5 g <a,ﬁa_n + a,ﬁa_n> (2.26)

n#0
The first order nonlocal charges:
1 14 ~ ~V
Q[l] = —wlR , Q n = xR — Z - (aL{‘a_]n - a%‘a_]n) (2.27)
n#0
The even order, 2N-th (N > 1) order nonlocal charges:
a1 = Q (2.28)
wo_ [nsY]
2N] — [ +NAQ [even] even] ZZ ( +a « n)
n;ﬁO
and for the odd order, 2N + 1-th (N > 1) order nonlocal charges:
QéN_l_l] = Qﬁ] (2.29)
v v . 1 V] ~ [ ~V]
Qv = Qi + NAQy  AQUy = =i )+ (alta, - alta,)
n#0

Independent components are zero-th and first order nonlocal charges for zero mode and
non-zero mode separately. The momentum, the winding number, the total Lorentz spin
and the relative Lorentz spin, which is the difference between the left mover spin and the
right mover spin, for zero mode and for non-zero modes are conserved separately.



2.4 T-duality

T-duality transformation interchanges the momentum and the winding by interchanging
R < 1/R. T-duality transformation in X (7, o) reduces the interchange 7 < o which causes

" —w' , R-1/R, a— —a, . (2.30)
The Noether charges after the T-duality transformation is given

Qly=Pr=w'R , Qi =N" = bR+ Z ( ko _@%dﬂn> . (2.31)
n#O

These Noether charges correspond to the first order nonlocal charges in the original back-
ground (R-27). Further higher order nonlocal charges after T-duality transformation are:

Qﬁ] =—p" ’[‘5 = —zlrpr — Z < [“a —1—04[“0//]”) (2.32)
n;éO
v Y ~ 1 J J
v = Q)+ Qpny = Qo T NAQren + AQferen) :ZZE <a£§‘a—n Gy n)
n#0
e = Q@+ @l "+ NAQY Z ( [ua}>
[2N+1] [1] > ¥2N+1] [1] [odd] [odd n
n;ﬁO

The first order nonlocal charges in the T-dualized background correspond to the zero-th
order charges of the original background (R.26). The even and the odd order nonlocal
charges are interchanged by T-duality. The set of independent conserved charges is equiv-
alent before and after the T-duality transformation in a flat space background.

3. Type IIB pp-wave background

In this section we will compute the nonlocal charges for a closed string in the pp-wave
background explicitly. The isometry algebra is inhomogeneous SO(n), so we apply our gen-
eralized BIZZ procedure to obtain nonlocal charges. Before introducing nontrivial winding
modes for the T-duality transformation we present the nonlocal charges in the type IIB

pp-wave background.

3.1 Noether charges
The type IIB pp-wave background is given by

ds? = 2dXTdX™ +dX"dX" — 42X X (dX ), 18

O F = pdX+ (dx'dx?dx3dX* + dX°dX%dX"dXx"®) . (3.1)
The action for a string in this background is

1
4o/

0 [20, XT0X ™ — 4P X' X0, X TOX T + 0, X'0°X"]

i=1,..,8 - (32)



Noether currents of the system are given by:

Jf =3 a X+

Jy = 2m (aX™ —4p2X'X'0,XT)

J& = 27ra ((9 X cos2uXt — X9, COSQ/LX+) (3.3)
Ji = 47w (0aX'sin2uX ™ — X'y sin 2uX ™)

JE = i X9, X

In the lightcone gauge X+ = p*7 the action becomes

1 ) ) .y
S =— / o [0, X'0°X' + *X'X'] , p=2pupt , -1 (3.4)

4o

and Virasoro constraints are

{ h=2P pt + XiX+ X' XV 4 12XIX7 =0 55)

t=pt X~ 4+ XiX" =0
P~ =X —4uptXiX?

with X = 8, X and X’ = 9, X. The quantization in the lightcone gauge is performed as
i i - i o 1 i —ino | ~i ino\ ,—inpnT
X' =z"cosfr+p'—sinpr +1 —E —(ane + a,e )e pn
f 2¢ o "WPn

AN 2
_ j
pn=1/1+ (n> (5.6)
with
[0 =67 | [of,od,] = npn67 b, _m = [dl,,dl,] - (3.7)

Noether charges are given as

Qo] = QJr = er
Q= @ =~ |+ atar 4 (el + bl
n#0
Q=@ =p (38)
ﬁ)‘] = Q” = —pta' )
\ n#0 n

which satisfy the following pp-wave algebra:

[Q,Q] =i%Q" | [Q,Q"] =—idQ" ,[Q,Q"] =isiQ*
(Q7,QF] = —is*i@] | [QY, Q%] = —is"i@i | [Q7,QM] = —istIl@MIT  (3.9)
others =0



3.2 Nonlocal charges

One form currents constructed from the Noether currents (B.J) as J = do®.J, satisfy the

following equations:

dJt =0 , dJ7 = 16T JIAT ™
.16 ‘ '
AJi — 7TM J+/\JZ* , dJ" = 47TO/J+/\JZ (310)
y o P
dJY = 4o/ (J’/\JJ + —/2JZ*/\JJ*>
[0

They are “flatness” condition and the consistency condition ddJ = 0 is also satisfied, so
the covariant derivative operator (R.1§) can be constructed. The structure constant read
off from the above equations (B.10) is different from the one of the pp-wave algebra (B.9)
as expected in the subsection 2.1.

According to the procedure (R.19) the first order nonlocal currents are given by

( j[l];r — Gaﬁj+ﬁ
Titja = €apd P — 8mp? <Ji Xff)k] - Jngo])
i i3 8_7r/£ + ik Q% A+
Tk = cap " + 22 (IG5 JaXM) (3.11)
Tgit = €agd™P = 2ma’ (T J;x[a)
| Tid = cap VP = 2ma <J£Xf]1 2z ﬁ)

where the dual potential x|g’s are given as:

1

Xjoy = *gl’ (3.12)

. 1 7 1 [L . ,[L o . . e .
T LT AT 1 _—ino i _ino —inpnT
Xjo] = 3 p 4 _2 = E ((1+ n)e +(1——pn)e ) (ane —Q,e )e

_ 1 i\ o ﬂ) ) o
ik~ O' P I e T ol e T _ Gt im0 o—inpnT
Xio) = 3P 8sz << ) < v (e ne™?)

The first order nonlocal charges are obtained as:

( A\ 2
- I i i ~i ~i
Q[1] = p+ Z#: o <1 + 2 <n> ) (ana_n — ana_n)
n#0
i . 1 i i 3.13
Qf =137 (ool - akal,) )
n#0
others = 0

where X~ in T, 1 determined from the Virasoro condition ¢ = 0 in (B.5). In the ref. [2§]
this term was set to be zero because of the total derivative of o, but there is a non-zero
contribution determined by the Virasoro condition.

The second order nonlocal current is given by

1
~7[2]£ = Ji - §F§C (EaﬁJBBX[Co] + JfX?u) (3.14)

,10,



and the second order nonlocal charges are obtained as

Q’—Q’——LE 2y 1422 2 (ahol, + aha',)
. o 1 i\ o o (3.15)
W [t [i 4] [i ~ 7]

Qpy— Q=12 (1 2 <n> ) (alia?, +afia’),)

n#0 P
others =0

(

These charges (B.15) are different from Qo) in (B.9). Higher order nonlocal charges are
obtained by this computation by the procedure (R.19), and it is expected that coefficients
on the nonlocal charges are different in each order unlike the flat case (2.28) and (B.29).
There exist an infinite number of independent conserved charges exist in the pp-wave
background contrast to the flat case.

4. T-dual pp-wave backgrounds

Now we will examine the nonlocal charges for closed strings with a winding mode in the
pp-wave backgrounds. We will compare the nonlocal charges before and after the T-duality
transformation.

4.1 Michelson’s cycle

In order to examine T-duality a spacelike circle is needed to compactify it. First we rewrite
IIB pp-wave coordinate in (B.T]) in terms of ##, then change variables as

Tt =Xt
rm =X —2uX'X?
o =X s (4.1)
x! cos2uX ™t —sin2uX™ X!
<x2> - <sinZ,uX+ cos2uX T ) <X2>

to get

ds? = 2dXTdX~ — 42X X (dXT)? + dX'dX? — SudX T X2%dX' | 1.8 1-3..8

IR} IEREE)

O F = pdXx+ (dx'dx*dXx3dX"* + dX°dX%dX"dx?®) . (4.2)
The action of a string in the Michelson’s pp-wave geometry is given by

Sup =
1 ) )
= / d*0[20, X T X~ 4P X XT 9, X T O XH + 0, X 0°X" — 8uX?0, X' 0°X ]

4o/

i=1,23,...8 5 I=3,.8- (4.3)

Target space indices —, 1,2 are renamed in such a way that they coincide translations and
rotations of the new coordinate basis (.J). We compactify a spacelike S! along the cycle
S whose isometry k‘SE = ke, + ﬁkeg- It breaks symmetry from SO(4) x SO(4) into

— 11 —



SO(2) x SO(4), so 1+ 6 isometries survive. Some translations and boosts are also broken,
and we list survived isometries in Michelson’s notation corresponding to our notation up
to normalization:

ke < th =52
ke, — 2pkn, & € = 52
key + gpkey = kgy & €' = 5%
key + 5 ke»{ =kg+ © 8 = (cos4pXT) 5% + (sinduX+) 5% + du(sin 4pX ) X252
ke, — ;ﬂkze; = k:Sl_2 & £ = (cos ZL,uX*‘)aX1 (sin4pX ™) ;9(2 + 4,u(cos ApXt)x2 -9

0X~
ke, < € = (cos 2,uX+)aX1 + 2u(sin 4 X T) X1 -9

ker < € = (sin 2MX+)8XI 2u(cos 4,uX+)XIa;(§__
(4.4)
A Killing vector,
koo = key — gpke; & ¥ = 5% +4pX' 52 (4.5)

becomes multivalued after compactification of X! direction so ill-defined. There are 17
isometries survived and they are noncompact Killing vectors except k51+2 . This geometry

is totally 1 4+ 6 + 17 = 24 dimensional group. The Noether currents, Jé‘, corresponding to

the Killing vectors £ are given as:
(Jf = & a X+
Jy = 2m (OaX™ — 42 XTXT0, X+ — 4pX20,X1)
Jy = 2m (Oa X! —4uX?0,XT)
Jo" = g (0aX? +4uX'9,XT)
J2 = 27m (0aX? cosdpX T + 9, X! sindpXT) (4.6)
J¥ = 47m (3 X2 sinduXt — 0, X! cos4,uX+)
Jé = 2@( ((9 X! cos2u Xt — Xlaacos2,uX+)
Jé* = 4M ((9 X! sin2pu X+ — Xjﬁasin2uX+)
JY = X0, X

where J* is the one for the non-compact case although it will be compactified soon later.
In the lightcone gauge the action for a string in the Michelson’s pp-wave geometry
becomes

Sup = 4730/ d’o [%X@O‘Xi + 2 xIx! +4/2X2X1]
fp=2p p , iz123..8 5 I=3..8 > (4.7)
and the Virasoro constraints are
hug = 2P pT + X°X'+ XV X" 4+ 2 X! XT =0
{ tg = pT X~ + (Xl - 2,&X2> XV 4+ x2x? 4 xIx!"=0
P~ =X —4p’ptXIXT —4pux?X'.
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A closed string with a winding mode X!(o+27) = X!(0) + 27 Rw can be quantized as
I I R O/ I . . Oé/ 1 I —i -7 . .
X' =a'cospr + —p sinfr + i/ — E — (e ™7 4 ajetn) e T
f 2 nzo Pn
X' 4iX? = wRo + e 7 {xcosm‘—l— psm,ur—i—u/ g i +dnei"") e_i"p”}
npn

X! —ix?

wRo + "7 {x CoS fIT + psm AT 44/ — Z Ape” M7 4 &nei"") e =Pt }
npn

pn =11+ 5 (4.9)
with

[xl,pj] = Z'(;U ) [xaﬁ] =1= [:E,p]
lod, o] =nppdo, —p = [al, )] (4.10)

[ana dm] = 2npn6n,fm = [dn, &m] .

The Noether charges, which are the zero-th order charges, are followings:

(O+ _
o =P
— 1 R 1 2
Qup = —zp7 <a p'p'+ ECUW) +—(whR)
i=2,3,....8
+ Z {(aflaln +akal )+ (1 + %) (an@—p + ana )}
n#0 n
1 .1
Yo =P (111)
0 =P (3: + 27TwR)
0 =P
5 v
I _ T
o] =P
o= -—pta! )
3 J ~J
B = a1+ 53 - (allad, +alla”,)
n#0 n
where zero mode variables are rewritten as
p;= 5(0+D) + igy (@ —f),x;:%(w+x)—ﬁgﬂ(p p) (4.12)
P’ =5(p—p) =g +7) 2% =4z —2) - LH(P+D)
[xl,pl] =1i= [w , P ] . (4.13)

The above charges excluding Q' and Q'* make a closed algebra. After compactify X!
direction as X' ~ X! + 27rwR the winding mode breaks Q[lo*} symmetry of the vacuum.
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The one form currents made from the Noether currents in (f.11)) as J4 = doJ2 satisfy

the following M.C. equations:

(dJt =0, dJ ™ = 16mp? (JEAT* + JIAT!*)
dJt = 10m pep gix, dJ* = —dma/ JTAT
dJ? = —18m2 o p g2 dJ? = dra JEAT? (4.14)
dJl = — 28T g p gl dJ* = dxa/ JEAJ!
aTY = dra’ (JIAT! + 2 TN

The structure constant read off from these M.C. equations is different from the algebra
generated by charges ([L.11]) again. The consistency ddJ = 0 corresponding to the Jacobi
identity is satisfied without J!' and J'*. Then compactification of X!-direction is possible
consistently. The first order conserved nonlocal charges are obtained as follows:

( 1 _ _wR
- of
- 1 1 i\’ 1.1 I <1
Qu =z (1+2() | (enal, —a5al,)
n#0 P
AN\ 2
+ <pn + H) (Qn@_p — dn&n)} (4.15)
n
. 1 o o
i . - [d]  ~fi~dl
Qm = ZZ " <ana—n oznoz_n>
n#0
\ others = (

It is essential to use the integration path in (R.24) to obtain consistent charges especially
Q- iy Qf)

4.2 T-duality

T-duality of the type IIB nine dimensional geometry ({3) along X!-direction transforms
into the type ITA background . For the pp-wave background the NS/NS two-form potential
B and the R/R three form potential® C' of the type IIA theory are responsible for the
nontrivial geometry the type IIB theory,

ds* = 2dXTdX ™ — 4p* (XTXT + 4(X?)?) (dXT)? +dX'dX" |, 2108 I=3..8
G0 = 8uXTdX%dX3dX* |, B=—4uX2dX'dX™. (4.16)

The action for a string in this ITA background is

Sia = — /d% 20, XT0°X ™ — 4p® (XTXT +4(X?)?) 9, X T X

4o

L9, XX + 4MX2€aﬁaaX13ﬁX+} . (4.17)
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The Noether currents in the IIA pp-wave background are given as:

(J5 = 30, X7
J, = 27}a {0a X~ —4p? (XTXT + 4(X?)?) 0, X+ — 2uX?eq30°X 1}
JL = QM (OaX' +4uX2e030° XT)
J = (X+a X' — X190, X +2uX%€,30°(XT)?)
JO% = 47m ((9 X2 cosdpuXt — X2(9acos4,uX+) (4.18)
Jg* = _W ((9 X2 sin4puX* — X26asin4,uX+)
Jé = 2@( ((9 x! cos2u Xt — Xlaacos2,uX+)
JI(’; = ((9 X! sin2pu X+ —Xlﬁasin2,uX+)
JU = 273 - X9, X ]

In the lightcone gauge the action becomes

1
4ol

Sta = AP0 [0, X'0°X" - p2 (X' XT +4(X?)?) —4pX2XY] . (4.19)

and the Virasoro constraints are

hia = 2P pt 4+ XX+ XV X7 4+ p2XTXT + 452(X?)? + 4 X2XY =0
tira = erX*/ + Xix" =0 (4.20)
P =X —4°pT (XTXT +4(X?)?) — 4pXx? XY
The quantization is given by
X' = wPRo + 2% + o/pir
1 0 . . .
- {(_1 + L)(ane—ma + dnema)e—wr
npn
+(1+ L) (@pem + &nei’w)eif”} einenT (4.21)
NpPn
5 _qu !
= Q[L
Z { —zna _ dneina)e—iﬂ’r + (dne—ina _ &neina)ei[rr} e—inpn’r
o tPn
with [mh,ph] = i in addition to X7 in the ([.9).
The Noether charges in the ITA background are given as
(Ol _—
o = 7*
Qg = —p" (2" + Rw'n)
) o "
- K ) 1,1 /
Qo = ~ 3+ 2 \ewr +§$$>+0‘(p) (4.22)
1= 1y
+ {(aﬁaln +akal )+ <1 + H) (ona—p + Ocna_n)}
n#0 n
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and Q * [I] [IO*} %6]} are the same with the IIB case in ({.11]). Comparing the

hghtcone Hamlltoman in the type ITA background, Q o | in ([.29) with the one in the type
I1IB background in ([.11]) leads to

_ _ 1
Qua = QB J(WR)Q = o/ (p")*. (4.23)

Then the zero-th order momentum charge QL 0] in the ITA background corresponds to the
first order nonlocal momentum charge Q[1 in the IIB background in ({.15)

Q[lo}HA = _Q[ll]HB . (4.24)
In order to make this correspondence complete as
Q[l(;iHA = —Q[lfiHB ; (4.25)
let us add a Wess-Zumino term in the “IIB” action
Lirpwz = —X” 00T+ 3 A S0, X205 X7) (4.26)

where X % is a Lagrange multiplier to ensure the M.C. equation of J' in (f.14). Under the
gl = 2 —|—4MX18X,
to the current Ji as

transformation the variation of Lrrp.wz gives a new contribution

1
SxLrrpwz = OCNFAT | AT = —Q—Xheaﬁaﬁxﬁ (4.27)
T

Then the first order nonlocal charge in the IIB background becomes Q[ll*} e = pTaf where
the zero mode of X! is 2. The commutator between Q[ll} B and Q[ll*]HB is realized as same
as the one of Q%O]HA and Q[ldeA. The zero mode of X is conjugate of w, [wu,wR/O/] =9
with :c}F — 2! = 2% in the IIB background side. This WZ term (26) is turns out to be
analogous to the Buscher T-duality transformation.

It is interesting that the M.C. equations for the one form current constructed from the
ITA Noether currents ({.1§) contain extra terms because of the ITA WZ term in ({.17). In
order to compute the nonlocal currents in this case this anomaly must be treated consis-
tently. We leave this problem for future investigation.

5. Conclusions and discussion

We have obtained nonlocal charges in terms of oscillators in a flat background and the IIB
and ITA pp-wave backgrounds. For the flat background we have shown that the set of inde-
pendent conserved nonlocal charges is the same before and after T-duality transformation
with interchanging odd and even-order charges; for example the zero-th order charge in the
T-dualized flat background coincides with the ones in the original background. T-duality
interchanges the momenta and the winding number and the total Lorentz spin and the
relative Lorentz spin which is the difference between the left mover’s spin and the right
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mover’s one. Among an infinite set of nonlocal charges independent charges are the zero-th
and first order charges which are the momenta and the winding number of zero mode and
the total spin and the relative spin for zero mode and non-zero modes separately.

For the pp-wave background we have computed the nonlocal charges and obtained
expressions of the zero-th, first and second order ones in terms of oscillators. Contrast to
the flat case coefficients of the mode expansion in nonlocal charges are different, so there
exist an infinite set of independent nonlocal charges for the pp-wave case. We have shown
that the zero-th order charges in the T-dualized pp-wave background, the ITA pp-wave
background, are included as a part of an infinite set of nonlocal charges in the original IIB
pp-wave background. Since we perform the lightcone quantization the lightcone Hamilto-
nians for the type IIB and the type IIA backgrounds are equal by T-duality. This equality
leads to identification of the modes in both sides. As a result the zero-th order momentum
charge in the ITA pp-wave side, Q%O]HA, corresponds to the first order nonlocal momentum
charge in the IIB pp-wave side, Q[lu ns- In order to make this correspondence complete the
zero-th order charge in the ITA pp-wave side, Q[IO*]HA, should correspond to the non-zero
value of the first order charge Q[ll*]HB in the IIB pp-wave side. Then we introduce a WZ
term for the “IIB” pp-wave background in such a way that this term causes non-zero value
of Q[ll*]HB satisfying the corresponding algebra. It turns out that the Lagrange multiplier
of the WZ term is a variable conjugate to the winding mode. This term is nothing but
the term used in the Buscher T-duality transformation. In another word one can intro-
duce the conjugate coordinate to the winding mode by adding the WZ term a la Buscher’s
T-duality transformation. The completeness of this correspondence requires the IIB side
to add the B,,, field as a target space interpretation of the WZ term and to include the
relative coordinate 2% = x4 — z_, so these dual degrees of freedom are hidden in also the
“IIB” side. Then it is natural to formulate string theories by “two-vierbein formalism” [BJ]
and it may be generalize to the general field theories. It may be interesting to relate the
issue to the finite size effect of the integrable system and other properties [B4].

In this paper we clarified the procedure of constructing the nonlocal charges for in-
homogeneous SO(n) cosets such as a flat and the pp-wave background cases; the basic
currents which satisfy the conservation law are set to be the Noether currents of the ac-
tion, and the “flatness” condition is examined. Based on these currents nonlocal charges
are constructed inductively. The conserved charges are obtained by the integration along
the boundary of the semi-infinite strip cut open the cylinderical worldsheet. We could not
compute the higher order nonlocal charges in the type IIA pp-wave background, since the
“flatness” condition of the ITA Noether currents includes extra terms caused by the WZ
term. We know that the WZ term produces a topological center in the Noether charge
algebra, where charges can be constructed but the ground state is only invariant under
a part of the symmetries. If this ITA theory and the IIB theory are really T-dual, then
the infinite set of nonlocal charges also exist in both theories. So there may be a further
generalization of the procedure constructing nonlocal charges for “non-flat” systems.

Nonlocal charges carry T-dual information as we have shown. T-duality in the pp-wave
space may trace back to the one in the AdS space where an infinite set of nonlocal charges
exist. So application of our analysis to the AdS space may be possible in the classical
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level. It is curious how nonlocal charges in the holographic dual theories realize T-dual

information. Generalization involving U-duality may be interesting, and we leave these

problem for future investigation.
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